
1

Multiscatter dark matter 
capture of our Sun

Senior Project I: Oral examination slides

Defender: Chan Ying
Project supervisor: Prof. Hitoshi Murayama

Mentors: Dr. W. Linda Xu & Dr. Toby Opferkuch
Thesis supervisor: Prof. Kenny Ng



2https://upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Standard_Model_of_Elementary_Particles_dark.svg/1070px-Standard_Model_of_Elementary_Particles_dark.svg.png

?Beyond

1. DM particle nature?

2. DM interactions?

Motivation to searching for Dark Matter (DM)



3

Direct detection Theoretical prediction

https://lz.lbl.gov/wp-content/uploads/sites/6/2014/07/LUX_watertank-1024x587.jpg

1. LUX-ZEPLIN (LZ)

2.   Collider
      Production

https://cds.cern.ch/images/CERN-HOMEWEB-PHO-2015-002-1/file?size=large https://particleastro.brown.edu/files/2019/10/Screenshot-from-2019-10-22-17-11-47.png

Lagrangian

etc.

Predicted
J. Aalbers, 2022 Fig 5

Monte Carlo 
simulation
⇒ Covers a 
range of 
models
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Vision

● Mfp
● DM mass

Initial condition

1. Orbit around Sun
2. Enter Sun

3.   Scattering 
after entrance

4.   Leaves if 
energy < escape 
energy

Repeat 1, 2, 3 until DM is 
captured

● Simulate successful DM capture event
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Content

1. Motivation and recent efforts to DM detection

2. Theoretical overview of DM multiscattering

3. Monte Carlo simulation of DM capture 
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1. Mean free path:
 
2. Kinematic parameters:     ,

Classical scattering 
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Consider a series of continuous scattering,
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Defining a new variable,
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Vision

● Mfp
● DM mass

Initial condition

● Simulate successful DM capture event

Initialization

not 
trapped

True

False

Inside 
Sun

False

Orbit until enter

True

Monte Carlo 
scattering
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Tasks to simulate DM capture

1. Orbiting: swifter (Fortran + Python)

2. Scattering algorithm (Python)
● Inputs and outputs by swifter

● Restoring Maxwell-Boltzmann Statistics
● Scattering Energy 
● Randomization of scattering processes
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Tasks to simulate DM capture

1. Orbiting: swifter (Fortran + Python)

2. Scattering algorithm (Python)
● Inputs and outputs by swifter

● Restoring Maxwell-Boltzmann Statistics
● Scattering Energy 
● Randomization of scattering processes

● Fortran: reduces computation time
● Sympletic fourth order T+U integrator
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swifter_tu4

1. param.in

2. tp.in

3. pl.in

tool_follow

enc.dat

follow.out

(executable) (executable)

● Automation inside Python using subprocess

● Recompilation for tool_follow solving display numerical data display 
problem
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Initial condition (NumPy arrays)

(NumPy arrays)

swifter_tu4

1. paramhash.in

2. tphash.in

3. pl.in

tool_follow

enc.dat

followhash.out

(executable) (executable)
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Rewrite two functions to wrap the swifter subprocess as loops
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while loop swifter until entering the Sun
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Tasks to simulate DM capture

1. Orbiting: swifter (Fortran + Python)

2. Scattering algorithm (Python)
● Inputs and outputs by swifter

● Restoring Maxwell-Boltzmann Statistics
● Scattering Energy 
● Randomization of scattering processes
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Initialization

not 
trapped

True

False

Inside 
Sun

False

Orbit until enter

True

Monte Carlo 
scattering

Initial condition

Maxwell-Boltzmann distribution

● Box-muller transform
Independent uniform random variables

For each dimension (x, y, z)

With the knowledge of using natural units
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Tasks to simulate DM capture

1. Orbiting: swifter (Fortran + Python)

2. Scattering algorithm (Python)
● Inputs and outputs by swifter

● Restoring Maxwell-Boltzmann Statistics
● Scattering Energy 
● Randomization of scattering processes
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Recall probabilistic energy loss
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Initialization

not 
trapped

True

False

Inside 
Sun

False

Orbit until enter

True

Monte Carlo 
scattering

Following only 1 scattering

● Uniform probabilistic fractional energy change

● Make use of               from previous run, energy after 
scattering will be sampled

●                                          the magnitude of new velocity is 
obtained

● project the                  and             to a random unit vector

● where we generate 2 independent uniform random 
variable 
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Successfully simulated DM capture events!



● .

●             apply to other astronomical bodies     
            and make radial profile for 
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Future work
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